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About me

Current: VP Engineering, Nutanix (multi cloud platform co)

Past:

Al4dinfra (P&L engg) & Infra4Al (opensource)

Founding member, MLCommons.org
MLOps/Kubeflow.org (c2017)
Openstack (c2012)

Visiting Scholar, Stanford
Distinguished Engg.@Cisco
Researcher in Computational Biology
PhD CS, USC/ISI (NS2 group)

Btech, IIT Kharagpur




Al fueling digital transformation
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Data -> Al -> Insights -> Actions

— Enterprise data explosion - databases, conversations, logs,
metrics, knowledge graphs

— Digital transformation: use enterprise data to increase
operational efficiency

— Al accelerates digital transformation by providing learned
insights which leads to better actions.

Key challenge: Accelerating traditional
businesses with MLOps
— Finance, retail, pharma, healthcare, public sector

- Manage data and ML
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https://blog.griddynamics.com/identifying-screws-a-practical-use-case-study-for-visual-search/
https://link.springer.com/article/10.1007/s11042-020-10151-w

Enterprise Al/ML use cases (similar infra

needs)
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Where is the “valuable” enterprise data”?
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OPI Opportunity: MLOps
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Experiments > AnomalyPrediction

< @ anomalyprediction-sagemaker-pipeline-28-06-21-10-46-42

Graph  Runoutput  Config
Simplify Grapt

mount-log-volume @
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SagoMaker - o Kubeflow - Serve @
Create Model Model using
KFServing
SageMaker - (]
Deploy Model

End to end Workflow Orchestration
* Repeatable
+ Composable

* Re-usable

Where do your teams encounter gaps in your ML activities & workflows?

Converting tuned models to
model serving

Connecting data pipelines to ML
pipelines

Hyperparameter tuning
Manually building ML pipelines
Monitoring models

Training models

Other
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Survey: Kubeflow PM Team
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Kubeflow
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MLOps Market Opportunity (XI)

According to Cognilytica, the global MLOps market
will be worth $4 billion by 2025.

The industry was worth $350 million in 2019,

Source: https.//askwonder.com/research/historical-global-ai-ml-ops-spend-
ulshsljuf



MLOps ecosystem: confusion
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DATA PREPARATION

Data Exploration & Processing
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Hosted Notebooks Management
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Model Management, Version Tracking and Storage
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Model Compliance & Audit
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OPI Opportuniy: Optimizing

MLOPS




Current ML Infra B -
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MLOps + OPI
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Research-y Futures: e o
Push down ML with OPI o ran
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 Federated learning
« SPDK primitives for

StOrage+ML . X86 X86 X86
* Infra optimization -
SChedU“ng Node Node Node
Nutanix Distributed File System (Data Plane)
53 AP| « Scale-out architecture * Physical storage abstraction
e Resource pooling e Distributed storage operations
* Distributed metadata * Tunable data resilience

management * Robust service resilience

¢ Automatic data tiering
» Local Cloud Storage Network Storage
(Flash + HDD) (optional) (optional)

B &b 85}




NUTANIDI.




